Met and c-Src cooperate to compensate for loss of epidermal growth factor receptor kinase activity in breast cancer cells.
نویسندگان
چکیده
Breast cancers are not responsive to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), although 30% of breast cancers overexpress EGFR. The mechanism of intrinsic resistance to EGFR TKIs in breast cancer is the focus of current studies. Here, we observed that EGFR remains tyrosine phosphorylated in breast cancer cells that proliferate in the presence of EGFR TKIs. In one such cell line, SUM229, inhibiting c-Src kinase activity with either a dominant-negative c-Src or a c-Src TKI decreased EGFR phosphorylation on Tyr(845), Tyr(992), and Tyr(1086) in the presence of EGFR TKIs. Conversely, overexpressing wild-type (wt) c-Src in the EGFR TKI-sensitive breast cancer cell line SUM149 increased EGFR kinase-independent EGFR tyrosine phosphorylation. In addition, in the presence of EGFR TKIs, inhibiting c-Src kinase activity decreased cell growth in SUM229 cells, and overexpressing wt-c-Src increased cell growth in SUM149 cells. We identified the receptor tyrosine kinase Met to be responsible for activating c-Src in SUM229 cells. Inhibiting Met kinase activity with a small molecule inhibitor decreased c-Src phosphorylation and kinase activation. In addition, inhibiting Met kinase activity in SUM229 cells decreased EGFR tyrosine phosphorylation and growth in the presence of EGFR TKIs. Stimulating Met kinase activity in SUM149 cells with hepatocyte growth factor increased EGFR tyrosine phosphorylation and cell growth in the presence of EGFR TKIs. These data suggest a Met/c-Src-mediated signaling pathway as a mediator of EGFR tyrosine phosphorylation and cell growth in the presence of EGFR TKIs.
منابع مشابه
Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملEGFR/Met association regulates EGFR TKI resistance in breast cancer
Breast cancers show a lack of response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), despite 30% of tumors expressing EGFR. The mechanism of this resistance is unknown; however, we have recently shown that Met kinase activity compensates for loss of EGFR kinase activity in cell culture models. Met has been implicated in the pathogenesis of breast tumors and there...
متن کامل2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors
Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...
متن کاملConcentration of soluble form of hepatocyte growth factor receptor in cerebrospinal fluid and serum of patients with bacterial and viral meningitis
Abstract Background and objectives: C-Met is a proto-oncogene that encodes a protein known as hepatocyte growth factor receptor (HGFR). The HGF receptor possesses tyrosine -kinase activity and it is essential for embryonic development, wound healing and cancer. Many proteins are proteolytically released from the surface by a process known as ectodomain shedding. Shedding occurs under normal phy...
متن کاملPTPa-mediated Src activation by EGF in human breast cancer cells
Protein tyrosine phosphatase alpha (PTPa) functions as an activator of Src by dephosphorylating Tyr527/530, a critical negative regulatory site. The increase of PTPa catalytic activity requires its phosphorylation at Ser180 and/or Ser204 and its dissociation from PTPa/Grb2 complex. Here, we show that epidermal growth factor (EGF) stimulation increases the ability of PTPa to activate Src by deph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 68 9 شماره
صفحات -
تاریخ انتشار 2008